mirror of
https://github.com/VictoriaMetrics/VictoriaMetrics.git
synced 2024-12-22 16:36:27 +01:00
8650809435
This is a follow-up for ac9c2a796f
Updates https://github.com/VictoriaMetrics/VictoriaMetrics/pull/6020
983 lines
47 KiB
Markdown
983 lines
47 KiB
Markdown
---
|
||
sort: 34
|
||
weight: 34
|
||
title: Key concepts
|
||
menu:
|
||
docs:
|
||
parent: 'victoriametrics'
|
||
weight: 34
|
||
aliases:
|
||
- /keyConcepts.html
|
||
- /keyсoncepts.html
|
||
---
|
||
|
||
# Key concepts
|
||
|
||
## Data model
|
||
|
||
### What is a metric
|
||
|
||
Simply put, `metric` is a numeric measure or observation of something.
|
||
|
||
The most common use-cases for metrics are:
|
||
|
||
- check how the system behaves at the particular time period;
|
||
- correlate behavior changes to other measurements;
|
||
- observe or forecast trends;
|
||
- trigger events (alerts) if the metric exceeds a threshold.
|
||
|
||
### Structure of a metric
|
||
|
||
Let's start with an example. To track how many requests our application serves, we'll define a metric with the
|
||
name `requests_total`.
|
||
|
||
You can be more specific here by saying `requests_success_total` (for only successful requests)
|
||
or `request_errors_total` (for requests which failed). Choosing a metric name is very important and supposed to clarify
|
||
what is actually measured to every person who reads it, just like **variable names** in programming.
|
||
|
||
#### Labels
|
||
|
||
Every metric can contain additional meta-information in the form of label-value pairs:
|
||
|
||
```
|
||
requests_total{path="/", code="200"}
|
||
requests_total{path="/", code="403"}
|
||
```
|
||
|
||
The meta-information - a set of `labels` in curly braces - gives us a context for which `path` and with what `code`
|
||
the `request` was served. Label-value pairs are always of a `string` type. VictoriaMetrics data model is schemaless,
|
||
which means there is no need to define metric names or their labels in advance. User is free to add or change ingested
|
||
metrics anytime.
|
||
|
||
Actually, the metric name is also a label with a special name `__name__`. So the following two series are identical:
|
||
|
||
```
|
||
requests_total{path="/", code="200"}
|
||
{__name__="requests_total", path="/", code="200"}
|
||
```
|
||
|
||
Labels can be automatically attached to the [time series](#time-series)
|
||
written via [vmagent](https://docs.victoriametrics.com/vmagent/#adding-labels-to-metrics)
|
||
or [Prometheus](https://docs.victoriametrics.com/single-server-victoriametrics/#prometheus-setup).
|
||
VictoriaMetrics supports enforcing of label filters for [query API](https://docs.victoriametrics.com/single-server-victoriametrics/#prometheus-querying-api-enhancements)
|
||
to emulate data isolation. However, the real data isolation can be achieved via [multi-tenancy](https://docs.victoriametrics.com/cluster-victoriametrics/#multitenancy).
|
||
|
||
#### Time series
|
||
|
||
A combination of a metric name and its labels defines a `time series`. For example,
|
||
`requests_total{path="/", code="200"}` and `requests_total{path="/", code="403"}`
|
||
are two different time series because they have different values for `code` label.
|
||
|
||
The number of unique time series has an impact on database resource usage.
|
||
See [what is an active time series](https://docs.victoriametrics.com/faq/#what-is-an-active-time-series) and
|
||
[what is high churn rate](https://docs.victoriametrics.com/faq/#what-is-high-churn-rate) docs for details.
|
||
|
||
#### Cardinality
|
||
|
||
The number of unique [time series](#time-series) is named `cardinality`. Too big number of unique time series is named `high cardinality`.
|
||
High cardinality may result in increased resource usage at VictoriaMetrics.
|
||
See [these docs](https://docs.victoriametrics.com/faq/#what-is-high-cardinality) for more details.
|
||
|
||
#### Raw samples
|
||
|
||
Every unique time series may consist of an arbitrary number of `(value, timestamp)` data points (aka `raw samples`) sorted by `timestamp`.
|
||
VictoriaMetrics stores all the `values` as [float64](https://en.wikipedia.org/wiki/Double-precision_floating-point_format)
|
||
with [extra compression](https://faun.pub/victoriametrics-achieving-better-compression-for-time-series-data-than-gorilla-317bc1f95932) applied.
|
||
This allows storing precise integer values with up to 12 decimal digits and any floating-point values with up to 12 significant decimal digits.
|
||
If the value has more than 12 significant decimal digits, then the less significant digits can be lost when storing them in VictoriaMetrics.
|
||
|
||
The `timestamp` is a [Unix timestamp](https://en.wikipedia.org/wiki/Unix_time) with millisecond precision.
|
||
|
||
Below is an example of a single raw sample
|
||
in [Prometheus text exposition format](https://github.com/prometheus/docs/blob/main/content/docs/instrumenting/exposition_formats.md#text-based-format):
|
||
|
||
```
|
||
requests_total{path="/", code="200"} 123 4567890
|
||
```
|
||
|
||
- The `requests_total{path="/", code="200"}` identifies the associated time series for the given sample.
|
||
- The `123` is a sample value.
|
||
- The `4567890` is an optional timestamp for the sample. If it is missing,
|
||
then the current timestamp is used when storing the sample in VictoriaMetrics.
|
||
|
||
#### Time series resolution
|
||
|
||
Resolution is the minimum interval between [raw samples](https://docs.victoriametrics.com/keyconcepts/#raw-samples)
|
||
of the [time series](https://docs.victoriametrics.com/keyconcepts/#time-series). Consider the following example:
|
||
```
|
||
----------------------------------------------------------------------
|
||
| <time series> | <value> | <timestamp> |
|
||
| requests_total{path="/health", code="200"} | 1 | 1676297640 |
|
||
| requests_total{path="/health", code="200"} | 2 | 1676297670 |
|
||
| requests_total{path="/health", code="200"} | 3 | 1676297700 |
|
||
| requests_total{path="/health", code="200"} | 4 | 1676297730 |
|
||
....
|
||
```
|
||
Here we have a time series `requests_total{path="/health", code="200"}` which has a value update each `30s`.
|
||
This means, its resolution is also a `30s`.
|
||
|
||
> In terms of [pull model](https://docs.victoriametrics.com/keyconcepts/#pull-model), resolution is equal
|
||
> to `scrape_interval` and is controlled by the monitoring system (server).
|
||
> For [push model](https://docs.victoriametrics.com/keyconcepts/#push-model), resolution is an interval between
|
||
> samples timestamps and is controlled by a client (metrics collector).
|
||
|
||
Try to keep time series resolution consistent, since some [MetricsQL](#metricsql) functions may expect it to be so.
|
||
|
||
|
||
### Types of metrics
|
||
|
||
Internally, VictoriaMetrics does not have the notion of a metric type. The concept of a metric
|
||
type exists specifically to help users to understand how the metric was measured. There are 4 common metric types.
|
||
|
||
#### Counter
|
||
|
||
Counter is a metric, which counts some events. Its value increases or stays the same over time.
|
||
It cannot decrease in general case. The only exception is e.g. `counter reset`,
|
||
when the metric resets to zero. The `counter reset` can occur when the service, which exposes the counter, restarts.
|
||
So, the `counter` metric shows the number of observed events since the service start.
|
||
|
||
In programming, `counter` is a variable that you **increment** each time something happens.
|
||
|
||
<img src="keyConcepts_counter.webp">
|
||
|
||
`vm_http_requests_total` is a typical example of a counter. The interpretation of a graph
|
||
above is that time series `vm_http_requests_total{instance="localhost:8428", job="victoriametrics", path="api/v1/query_range"}`
|
||
was rapidly changing from 1:38 pm to 1:39 pm, then there were no changes until 1:41 pm.
|
||
|
||
Counter is used for measuring the number of events, like the number of requests, errors, logs, messages, etc.
|
||
The most common [MetricsQL](#metricsql) functions used with counters are:
|
||
|
||
* [rate](https://docs.victoriametrics.com/metricsql/#rate) - calculates the average per-second speed of metric change.
|
||
For example, `rate(requests_total)` shows how many requests are served per second on average;
|
||
* [increase](https://docs.victoriametrics.com/metricsql/#increase) - calculates the growth of a metric on the given
|
||
time period specified in square brackets.
|
||
For example, `increase(requests_total[1h])` shows the number of requests served over the last hour.
|
||
|
||
It is OK to have fractional counters. For example, `request_duration_seconds_sum` counter may sum the durations of all the requests.
|
||
Every duration may have a fractional value in seconds, e.g. `0.5` of a second. So the cumulative sum of all the request durations
|
||
may be fractional too.
|
||
|
||
It is recommended to put `_total`, `_sum` or `_count` suffix to `counter` metric names, so such metrics can be easily differentiated
|
||
by humans from other metric types.
|
||
|
||
#### Gauge
|
||
|
||
Gauge is used for measuring a value that can go up and down:
|
||
|
||
<img src="keyConcepts_gauge.webp">
|
||
|
||
The metric `process_resident_memory_anon_bytes` on the graph shows the memory usage of the application at every given time.
|
||
It is changing frequently, going up and down showing how the process allocates and frees the memory.
|
||
In programming, `gauge` is a variable to which you **set** a specific value as it changes.
|
||
|
||
Gauge is used in the following scenarios:
|
||
|
||
* measuring temperature, memory usage, disk usage etc;
|
||
* storing the state of some process. For example, gauge `config_reloaded_successful` can be set to `1` if everything is
|
||
good, and to `0` if configuration failed to reload;
|
||
* storing the timestamp when the event happened. For example, `config_last_reload_success_timestamp_seconds`
|
||
can store the timestamp of the last successful configuration reload.
|
||
|
||
The most common [MetricsQL](#metricsql) functions used with gauges are [aggregation functions](#aggregation-and-grouping-functions)
|
||
and [rollup functions](https://docs.victoriametrics.com/metricsql/#rollup-functions).
|
||
|
||
#### Histogram
|
||
|
||
Histogram is a set of [counter](#counter) metrics with different `vmrange` or `le` labels.
|
||
The `vmrange` or `le` labels define measurement boundaries of a particular bucket.
|
||
When the observed measurement hits a particular bucket, then the corresponding counter is incremented.
|
||
|
||
Histogram buckets usually have `_bucket` suffix in their names.
|
||
For example, VictoriaMetrics tracks the distribution of rows processed per query with the `vm_rows_read_per_query` histogram.
|
||
The exposition format for this histogram has the following form:
|
||
|
||
```
|
||
vm_rows_read_per_query_bucket{vmrange="4.084e+02...4.642e+02"} 2
|
||
vm_rows_read_per_query_bucket{vmrange="5.275e+02...5.995e+02"} 1
|
||
vm_rows_read_per_query_bucket{vmrange="8.799e+02...1.000e+03"} 1
|
||
vm_rows_read_per_query_bucket{vmrange="1.468e+03...1.668e+03"} 3
|
||
vm_rows_read_per_query_bucket{vmrange="1.896e+03...2.154e+03"} 4
|
||
vm_rows_read_per_query_sum 15582
|
||
vm_rows_read_per_query_count 11
|
||
```
|
||
|
||
The `vm_rows_read_per_query_bucket{vmrange="4.084e+02...4.642e+02"} 2` line means
|
||
that there were 2 queries with the number of rows in the range `(408.4 - 464.2]`
|
||
since the last VictoriaMetrics start.
|
||
|
||
The counters ending with `_bucket` suffix allow estimating arbitrary percentile
|
||
for the observed measurement with the help of [histogram_quantile](https://docs.victoriametrics.com/metricsql/#histogram_quantile)
|
||
function. For example, the following query returns the estimated 99th percentile
|
||
on the number of rows read per each query during the last hour (see `1h` in square brackets):
|
||
|
||
```metricsql
|
||
histogram_quantile(0.99, sum(increase(vm_rows_read_per_query_bucket[1h])) by (vmrange))
|
||
```
|
||
|
||
This query works in the following way:
|
||
|
||
1. The `increase(vm_rows_read_per_query_bucket[1h])` calculates per-bucket per-instance
|
||
number of events over the last hour.
|
||
1. The `sum(...) by (vmrange)` calculates per-bucket events by summing per-instance buckets
|
||
with the same `vmrange` values.
|
||
1. The `histogram_quantile(0.99, ...)` calculates 99th percentile over `vmrange` buckets returned at step 2.
|
||
|
||
Histogram metric type exposes two additional counters ending with `_sum` and `_count` suffixes:
|
||
|
||
- the `vm_rows_read_per_query_sum` is a sum of all the observed measurements,
|
||
e.g. the sum of rows served by all the queries since the last VictoriaMetrics start.
|
||
|
||
- the `vm_rows_read_per_query_count` is the total number of observed events,
|
||
e.g. the total number of observed queries since the last VictoriaMetrics start.
|
||
|
||
These counters allow calculating the average measurement value on a particular lookbehind window.
|
||
For example, the following query calculates the average number of rows read per query
|
||
during the last 5 minutes (see `5m` in square brackets):
|
||
|
||
```metricsql
|
||
increase(vm_rows_read_per_query_sum[5m]) / increase(vm_rows_read_per_query_count[5m])
|
||
```
|
||
|
||
The `vm_rows_read_per_query` histogram may be used in Go application in the following way
|
||
by using the [github.com/VictoriaMetrics/metrics](https://github.com/VictoriaMetrics/metrics) package:
|
||
|
||
```go
|
||
// define the histogram
|
||
rowsReadPerQuery := metrics.NewHistogram(`vm_rows_read_per_query`)
|
||
|
||
// use the histogram during processing
|
||
for _, query := range queries {
|
||
rowsReadPerQuery.Update(float64(len(query.Rows)))
|
||
}
|
||
```
|
||
|
||
Now let's see what happens each time when `rowsReadPerQuery.Update` is called:
|
||
|
||
* counter `vm_rows_read_per_query_sum` is incremented by value of `len(query.Rows)` expression;
|
||
* counter `vm_rows_read_per_query_count` increments by 1;
|
||
* counter `vm_rows_read_per_query_bucket` gets incremented only if observed value is within the
|
||
range (`bucket`) defined in `vmrange`.
|
||
|
||
Such a combination of `counter` metrics allows
|
||
plotting [Heatmaps in Grafana](https://grafana.com/docs/grafana/latest/visualizations/heatmap/)
|
||
and calculating [quantiles](https://prometheus.io/docs/practices/histograms/#quantiles):
|
||
|
||
<img src="keyConcepts_histogram.webp">
|
||
|
||
Grafana doesn't understand buckets with `vmrange` labels, so the [prometheus_buckets](https://docs.victoriametrics.com/metricsql/#prometheus_buckets)
|
||
function must be used for converting buckets with `vmrange` labels to buckets with `le` labels before building heatmaps in Grafana.
|
||
|
||
Histograms are usually used for measuring the distribution of latency, sizes of elements (batch size, for example) etc. There are two
|
||
implementations of a histogram supported by VictoriaMetrics:
|
||
|
||
1. [Prometheus histogram](https://prometheus.io/docs/practices/histograms/). The canonical histogram implementation is
|
||
supported by most of
|
||
the [client libraries for metrics instrumentation](https://prometheus.io/docs/instrumenting/clientlibs/). Prometheus
|
||
histogram requires a user to define ranges (`buckets`) statically.
|
||
1. [VictoriaMetrics histogram](https://valyala.medium.com/improving-histogram-usability-for-prometheus-and-grafana-bc7e5df0e350)
|
||
supported by [VictoriaMetrics/metrics](https://github.com/VictoriaMetrics/metrics) instrumentation library.
|
||
Victoriametrics histogram automatically handles bucket boundaries, so users don't need to think about them.
|
||
|
||
We recommend reading the following articles before you start using histograms:
|
||
|
||
1. [Prometheus histogram](https://prometheus.io/docs/concepts/metric_types/#histogram)
|
||
1. [Histograms and summaries](https://prometheus.io/docs/practices/histograms/)
|
||
1. [How does a Prometheus Histogram work?](https://www.robustperception.io/how-does-a-prometheus-histogram-work)
|
||
1. [Improving histogram usability for Prometheus and Grafana](https://valyala.medium.com/improving-histogram-usability-for-prometheus-and-grafana-bc7e5df0e350)
|
||
|
||
#### Summary
|
||
|
||
Summary metric type is quite similar to [histogram](#histogram) and is used for
|
||
[quantiles](https://prometheus.io/docs/practices/histograms/#quantiles) calculations. The main difference
|
||
is that calculations are made on the client-side, so metrics exposition format already contains pre-defined
|
||
quantiles:
|
||
|
||
```
|
||
go_gc_duration_seconds{quantile="0"} 0
|
||
go_gc_duration_seconds{quantile="0.25"} 0
|
||
go_gc_duration_seconds{quantile="0.5"} 0
|
||
go_gc_duration_seconds{quantile="0.75"} 8.0696e-05
|
||
go_gc_duration_seconds{quantile="1"} 0.001222168
|
||
go_gc_duration_seconds_sum 0.015077078
|
||
go_gc_duration_seconds_count 83
|
||
```
|
||
|
||
The visualization of summaries is pretty straightforward:
|
||
|
||
<img src="keyConcepts_summary.webp">
|
||
|
||
Such an approach makes summaries easier to use but also puts significant limitations compared to [histograms](#histogram):
|
||
|
||
- It is impossible to calculate quantile over multiple summary metrics, e.g. `sum(go_gc_duration_seconds{quantile="0.75"})`,
|
||
`avg(go_gc_duration_seconds{quantile="0.75"})` or `max(go_gc_duration_seconds{quantile="0.75"})`
|
||
won't return the expected 75th percentile over `go_gc_duration_seconds` metrics collected from multiple instances
|
||
of the application. See [this article](https://latencytipoftheday.blogspot.de/2014/06/latencytipoftheday-you-cant-average.html) for details.
|
||
|
||
- It is impossible to calculate quantiles other than the already pre-calculated quantiles.
|
||
|
||
- It is impossible to calculate quantiles for measurements collected over an arbitrary time range. Usually, `summary`
|
||
quantiles are calculated over a fixed time range such as the last 5 minutes.
|
||
|
||
Summaries are usually used for tracking the pre-defined percentiles for latency, sizes of elements (batch size, for example) etc.
|
||
|
||
### Instrumenting application with metrics
|
||
|
||
As was said at the beginning of the [types of metrics](#types-of-metrics) section, metric type defines how it was
|
||
measured. VictoriaMetrics TSDB doesn't know about metric types. All it sees are metric names, labels, values, and timestamps.
|
||
What are these metrics, what do they measure, and how - all this depends on the application which emits them.
|
||
|
||
To instrument your application with metrics compatible with VictoriaMetrics we recommend
|
||
using [github.com/VictoriaMetrics/metrics](https://github.com/VictoriaMetrics/metrics) package.
|
||
See more details on how to use it in [this article](https://victoriametrics.medium.com/how-to-monitor-go-applications-with-victoriametrics-c04703110870).
|
||
|
||
VictoriaMetrics is also compatible with [Prometheus client libraries for metrics instrumentation](https://prometheus.io/docs/instrumenting/clientlibs/).
|
||
|
||
#### Naming
|
||
|
||
We recommend following [Prometheus naming convention for metrics](https://prometheus.io/docs/practices/naming/). There
|
||
are no strict restrictions, so any metric name and labels are accepted by VictoriaMetrics.
|
||
But the convention helps to keep names meaningful, descriptive, and clear to other people.
|
||
Following convention is a good practice.
|
||
|
||
#### Labels
|
||
|
||
Every measurement can contain an arbitrary number of `key="value"` labels. The good practice is to keep this number limited.
|
||
Otherwise, it would be difficult to deal with measurements containing a big number of labels.
|
||
By default, VictoriaMetrics limits the number of labels per measurement to `30` and drops other labels.
|
||
This limit can be changed via `-maxLabelsPerTimeseries` command-line flag if necessary (but this isn't recommended).
|
||
|
||
Every label value can contain an arbitrary string value. The good practice is to use short and meaningful label values to
|
||
describe the attribute of the metric, not to tell the story about it. For example, label-value pair
|
||
`environment="prod"` is ok, but `log_message="long log message with a lot of details..."` is not ok. By default,
|
||
VictoriaMetrics limits label's value size with 1kB. This limit can be changed via `-maxLabelValueLen` command-line flag.
|
||
|
||
It is very important to keep under control the number of unique label values, since every unique label value
|
||
leads to a new [time series](#time-series). Try to avoid using volatile label values such as session ID or query ID in order to
|
||
avoid excessive resource usage and database slowdown.
|
||
|
||
### Multi-tenancy
|
||
|
||
[Cluster version](https://docs.victoriametrics.com/cluster-victoriametrics/) of VictoriaMetrics
|
||
supports [multi-tenancy](https://docs.victoriametrics.com/cluster-victoriametrics/#multitenancy)
|
||
for data isolation.
|
||
|
||
Multi-tenancy can be emulated for [single-server](https://docs.victoriametrics.com/single-server-victoriametrics/)
|
||
version of VictoriaMetrics by adding [labels](#labels) on [write path](#write-data)
|
||
and enforcing [labels filtering](https://docs.victoriametrics.com/single-server-victoriametrics/#prometheus-querying-api-enhancements)
|
||
on [read path](#query-data).
|
||
|
||
|
||
## Write data
|
||
|
||
VictoriaMetrics supports both models used in modern monitoring applications: [push](#push-model) and [pull](#pull-model).
|
||
|
||
### Push model
|
||
|
||
Client regularly sends the collected metrics to the server in the push model:
|
||
|
||
<img src="keyConcepts_push_model.webp">
|
||
|
||
The client (application) decides when and where to send its metrics. VictoriaMetrics supports many protocols
|
||
for data ingestion (aka `push protocols`) - see [the full list here](https://docs.victoriametrics.com/#how-to-import-time-series-data).
|
||
All the protocols are fully compatible with VictoriaMetrics [data model](#data-model) and can be used in production.
|
||
We recommend using the [github.com/VictoriaMetrics/metrics](https://github.com/VictoriaMetrics/metrics) package
|
||
for pushing application metrics to VictoriaMetrics.
|
||
It is also possible to use already existing clients compatible with the protocols listed above
|
||
like [Telegraf](https://github.com/influxdata/telegraf)
|
||
for [InfluxDB line protocol](https://docs.victoriametrics.com/single-server-victoriametrics/#how-to-send-data-from-influxdb-compatible-agents-such-as-telegraf).
|
||
|
||
Creating custom clients or instrumenting the application for metrics writing is as easy as sending a POST request:
|
||
|
||
```sh
|
||
curl -d '{"metric":{"__name__":"foo","job":"node_exporter"},"values":[0,1,2],"timestamps":[1549891472010,1549891487724,1549891503438]}' -X POST 'http://localhost:8428/api/v1/import'
|
||
```
|
||
|
||
It is allowed to push/write metrics to [single-node VictoriaMetrics](https://docs.victoriametrics.com/single-server-victoriametrics/),
|
||
to [cluster component vminsert](https://docs.victoriametrics.com/cluster-victoriametrics/#architecture-overview)
|
||
and to [vmagent](https://docs.victoriametrics.com/vmagent/).
|
||
|
||
The pros of push model:
|
||
|
||
* Simpler configuration at VictoriaMetrics side - there is no need to configure VictoriaMetrics with locations of the monitored applications.
|
||
There is no need in complex [service discovery schemes](https://docs.victoriametrics.com/sd_configs/).
|
||
* Simpler security setup - there is no need to set up access from VictoriaMetrics to each monitored application.
|
||
|
||
See [Foiled by the Firewall: A Tale of Transition From Prometheus to VictoriaMetrics](https://www.percona.com/blog/2020/12/01/foiled-by-the-firewall-a-tale-of-transition-from-prometheus-to-victoriametrics/)
|
||
elaborating more on why Percona switched from pull to push model.
|
||
|
||
The cons of push protocol:
|
||
|
||
* Increased configuration complexity for monitored applications.
|
||
Every application needs to be individually configured with the address of the monitoring system
|
||
for metrics delivery. It also needs to be configured with the interval between metric pushes
|
||
and the strategy in case of metric delivery failure.
|
||
* Non-trivial setup for metrics' delivery into multiple monitoring systems.
|
||
* It may be hard to tell whether the application went down or just stopped sending metrics for a different reason.
|
||
* Applications can overload the monitoring system by pushing metrics at too short intervals.
|
||
|
||
### Pull model
|
||
|
||
Pull model is an approach popularized by [Prometheus](https://prometheus.io/), where the monitoring system decides when
|
||
and where to pull metrics from:
|
||
|
||
<img src="keyConcepts_pull_model.webp">
|
||
|
||
In pull model, the monitoring system needs to be aware of all the applications it needs to monitor. The metrics are
|
||
scraped (pulled) from the known applications (aka `scrape targets`) via HTTP protocol on a regular basis (aka `scrape_interval`).
|
||
|
||
VictoriaMetrics supports discovering Prometheus-compatible targets and scraping metrics from them in the same way as Prometheus does -
|
||
see [these docs](https://docs.victoriametrics.com/#how-to-scrape-prometheus-exporters-such-as-node-exporter).
|
||
|
||
Metrics scraping is supported by [single-node VictoriaMetrics](https://docs.victoriametrics.com/#how-to-scrape-prometheus-exporters-such-as-node-exporter)
|
||
and by [vmagent](https://docs.victoriametrics.com/vmagent/).
|
||
|
||
The pros of the pull model:
|
||
|
||
* Easier to debug - VictoriaMetrics knows about all the monitored applications (aka `scrape targets`).
|
||
The `up == 0` query instantly shows unavailable scrape targets.
|
||
The actual information about scrape targets is available at `http://victoriametrics:8428/targets` and `http://vmagent:8429/targets`.
|
||
* Monitoring system controls the frequency of metrics' scrape, so it is easier to control its load.
|
||
* Applications aren't aware of the monitoring system and don't need to implement the logic for metrics delivery.
|
||
|
||
The cons of the pull model:
|
||
|
||
* Harder security setup - monitoring system needs to have access to applications it monitors.
|
||
* Pull model needs non-trivial [service discovery schemes](https://docs.victoriametrics.com/sd_configs/).
|
||
|
||
### Common approaches for data collection
|
||
|
||
VictoriaMetrics supports both [push](#push-model) and [pull](#pull-model)
|
||
models for data collection. Many installations use exclusively one of these models, or both at once.
|
||
|
||
The most common approach for data collection is using both models:
|
||
|
||
<img src="keyConcepts_data_collection.webp">
|
||
|
||
In this approach the additional component is used - [vmagent](https://docs.victoriametrics.com/vmagent/). Vmagent is
|
||
a lightweight agent whose main purpose is to collect, filter, relabel and deliver metrics to VictoriaMetrics.
|
||
It supports all [push](#push-model) and [pull](#pull-model) protocols mentioned above.
|
||
|
||
The basic monitoring setup of VictoriaMetrics and vmagent is described
|
||
in the [example docker-compose manifest](https://github.com/VictoriaMetrics/VictoriaMetrics/tree/master/deployment/docker).
|
||
In this example vmagent [scrapes a list of targets](https://github.com/VictoriaMetrics/VictoriaMetrics/blob/master/deployment/docker/prometheus.yml)
|
||
and [forwards collected data to VictoriaMetrics](https://github.com/VictoriaMetrics/VictoriaMetrics/blob/9d7da130b5a873be334b38c8d8dec702c9e8fac5/deployment/docker/docker-compose.yml#L15).
|
||
VictoriaMetrics is then used as a [datasource for Grafana](https://github.com/VictoriaMetrics/VictoriaMetrics/tree/master/deployment/docker/provisioning/datasources)
|
||
installation for querying collected data.
|
||
|
||
VictoriaMetrics components allow building more advanced topologies. For example, vmagents can push metrics from separate datacenters to the central VictoriaMetrics:
|
||
|
||
<img src="keyConcepts_two_dcs.webp">
|
||
|
||
VictoriaMetrics in this example may be either [single-node VictoriaMetrics](https://docs.victoriametrics.com/single-server-victoriametrics/)
|
||
or [VictoriaMetrics Cluster](https://docs.victoriametrics.com/cluster-victoriametrics/). Vmagent also allows
|
||
[replicating the same data to multiple destinations](https://docs.victoriametrics.com/vmagent/#replication-and-high-availability).
|
||
|
||
## Query data
|
||
|
||
VictoriaMetrics provides
|
||
an [HTTP API](https://docs.victoriametrics.com/single-server-victoriametrics/#prometheus-querying-api-usage)
|
||
for serving read queries. The API is used in various integrations such as
|
||
[Grafana](https://docs.victoriametrics.com/single-server-victoriametrics/#grafana-setup). The same API is also used by
|
||
[VMUI](https://docs.victoriametrics.com/single-server-victoriametrics/#vmui) - a graphical User Interface for querying
|
||
and visualizing metrics.
|
||
|
||
The API consists of two main handlers for serving [instant queries](#instant-query) and [range queries](#range-query).
|
||
|
||
### Instant query
|
||
|
||
Instant query executes the `query` expression at the given `time`:
|
||
|
||
```
|
||
GET | POST /api/v1/query?query=...&time=...&step=...&timeout=...
|
||
```
|
||
|
||
Params:
|
||
|
||
* `query` - [MetricsQL](https://docs.victoriametrics.com/metricsql/) expression.
|
||
* `time` - optional, [timestamp](https://docs.victoriametrics.com/single-server-victoriametrics/#timestamp-formats)
|
||
in second precision to evaluate the `query` at. If omitted, `time` is set to `now()` (current timestamp).
|
||
The `time` param can be specified in [multiple allowed formats](https://docs.victoriametrics.com/#timestamp-formats).
|
||
* `step` - optional [interval](https://prometheus.io/docs/prometheus/latest/querying/basics/#time-durations)
|
||
for searching for raw samples in the past when executing the `query` (used when a sample is missing at the specified `time`).
|
||
For example, the request `/api/v1/query?query=up&step=1m` looks for the last written raw sample for the metric `up`
|
||
in the interval between `now()` and `now()-1m`. If omitted, `step` is set to `5m` (5 minutes) by default.
|
||
* `timeout` - optional query timeout. For example, `timeout=5s`. Query is canceled when the timeout is reached.
|
||
By default the timeout is set to the value of `-search.maxQueryDuration` command-line flag passed to single-node VictoriaMetrics
|
||
or to `vmselect` component of VictoriaMetrics cluster.
|
||
|
||
The result of Instant query is a list of [time series](https://docs.victoriametrics.com/keyconcepts/#time-series)
|
||
matching the filter in `query` expression. Each returned series contains exactly one `(timestamp, value)` entry,
|
||
where `timestamp` equals to the `time` query arg, while the `value` contains `query` result at the requested `time`.
|
||
|
||
To understand how instant queries work, let's begin with a data sample:
|
||
|
||
```
|
||
foo_bar 1.00 1652169600000 # 2022-05-10 10:00:00
|
||
foo_bar 2.00 1652169660000 # 2022-05-10 10:01:00
|
||
foo_bar 3.00 1652169720000 # 2022-05-10 10:02:00
|
||
foo_bar 5.00 1652169840000 # 2022-05-10 10:04:00, one point missed
|
||
foo_bar 5.50 1652169960000 # 2022-05-10 10:06:00, one point missed
|
||
foo_bar 5.50 1652170020000 # 2022-05-10 10:07:00
|
||
foo_bar 4.00 1652170080000 # 2022-05-10 10:08:00
|
||
foo_bar 3.50 1652170260000 # 2022-05-10 10:11:00, two points missed
|
||
foo_bar 3.25 1652170320000 # 2022-05-10 10:12:00
|
||
foo_bar 3.00 1652170380000 # 2022-05-10 10:13:00
|
||
foo_bar 2.00 1652170440000 # 2022-05-10 10:14:00
|
||
foo_bar 1.00 1652170500000 # 2022-05-10 10:15:00
|
||
foo_bar 4.00 1652170560000 # 2022-05-10 10:16:00
|
||
```
|
||
|
||
The data above contains a list of samples for the `foo_bar` time series with time intervals between samples
|
||
ranging from 1m to 3m. If we plot this data sample on the graph, it will have the following form:
|
||
|
||
<img src="keyConcepts_data_samples.webp" width="500">
|
||
|
||
To get the value of the `foo_bar` series at some specific moment of time, for example `2022-05-10 10:03:00`, in
|
||
VictoriaMetrics we need to issue an **instant query**:
|
||
|
||
```sh
|
||
curl "http://<victoria-metrics-addr>/api/v1/query?query=foo_bar&time=2022-05-10T10:03:00.000Z"
|
||
```
|
||
|
||
```json
|
||
{
|
||
"status": "success",
|
||
"data": {
|
||
"resultType": "vector",
|
||
"result": [
|
||
{
|
||
"metric": {
|
||
"__name__": "foo_bar"
|
||
},
|
||
"value": [
|
||
1652169780, // 2022-05-10 10:03:00
|
||
"3"
|
||
]
|
||
}
|
||
]
|
||
}
|
||
}
|
||
```
|
||
|
||
In response, VictoriaMetrics returns a single sample-timestamp pair with a value of `3` for the series
|
||
`foo_bar` at the given moment in time `2022-05-10 10:03`. But, if we take a look at the original data sample again,
|
||
we'll see that there is no raw sample at `2022-05-10 10:03`. When there is no raw sample at the
|
||
requested timestamp, VictoriaMetrics will try to locate the closest sample before the requested timestamp:
|
||
|
||
<img src="keyConcepts_instant_query.webp" width="500">
|
||
|
||
The time range in which VictoriaMetrics will try to locate a replacement for a missing data sample is equal to `5m`
|
||
by default and can be overridden via the `step` parameter.
|
||
|
||
Instant queries can return multiple time series, but always only one data sample per series. Instant queries are used in
|
||
the following scenarios:
|
||
|
||
* Getting the last recorded value;
|
||
* For [rollup functions](https://docs.victoriametrics.com/metricsql/#rollup-functions) such as `count_over_time`;
|
||
* For alerts and recording rules evaluation;
|
||
* Plotting Stat or Table panels in Grafana.
|
||
|
||
### Range query
|
||
|
||
Range query executes the `query` expression at the given [`start`...`end`] time range with the given `step`:
|
||
|
||
```
|
||
GET | POST /api/v1/query_range?query=...&start=...&end=...&step=...&timeout=...
|
||
```
|
||
|
||
Params:
|
||
* `query` - [MetricsQL](https://docs.victoriametrics.com/metricsql/) expression.
|
||
* `start` - the starting [timestamp](https://docs.victoriametrics.com/single-server-victoriametrics/#timestamp-formats)
|
||
of the time range for `query` evaluation.
|
||
* `end` - the ending [timestamp](https://docs.victoriametrics.com/single-server-victoriametrics/#timestamp-formats)
|
||
of the time range for `query` evaluation.
|
||
If the `end` isn't set, then the `end` is automatically set to the current time.
|
||
* `step` - the [interval](https://prometheus.io/docs/prometheus/latest/querying/basics/#time-durations)
|
||
between data points, which must be returned from the range query.
|
||
The `query` is executed at `start`, `start+step`, `start+2*step`, ..., `end` timestamps.
|
||
If the `step` isn't set, then it default to `5m` (5 minutes).
|
||
* `timeout` - optional query timeout. For example, `timeout=5s`. Query is canceled when the timeout is reached.
|
||
By default the timeout is set to the value of `-search.maxQueryDuration` command-line flag passed to single-node VictoriaMetrics
|
||
or to `vmselect` component in VictoriaMetrics cluster.
|
||
|
||
The result of Range query is a list of [time series](https://docs.victoriametrics.com/keyconcepts/#time-series)
|
||
matching the filter in `query` expression. Each returned series contains `(timestamp, value)` results for the `query` executed
|
||
at `start`, `start+step`, `start+2*step`, ..., `end` timestamps. In other words, Range query is an [Instant query](#instant-query)
|
||
executed independently at `start`, `start+step`, ..., `end` timestamps.
|
||
|
||
For example, to get the values of `foo_bar` during the time range from `2022-05-10 09:59:00` to `2022-05-10 10:17:00`,
|
||
we need to issue a range query:
|
||
|
||
```sh
|
||
curl "http://<victoria-metrics-addr>/api/v1/query_range?query=foo_bar&step=1m&start=2022-05-10T09:59:00.000Z&end=2022-05-10T10:17:00.000Z"
|
||
```
|
||
|
||
```json
|
||
{
|
||
"status": "success",
|
||
"data": {
|
||
"resultType": "matrix",
|
||
"result": [
|
||
{
|
||
"metric": {
|
||
"__name__": "foo_bar"
|
||
},
|
||
"values": [
|
||
[
|
||
1652169600,
|
||
"1"
|
||
],
|
||
[
|
||
1652169660,
|
||
"2"
|
||
],
|
||
[
|
||
1652169720,
|
||
"3"
|
||
],
|
||
[
|
||
1652169780,
|
||
"3"
|
||
],
|
||
[
|
||
1652169840,
|
||
"7"
|
||
],
|
||
[
|
||
1652169900,
|
||
"7"
|
||
],
|
||
[
|
||
1652169960,
|
||
"7.5"
|
||
],
|
||
[
|
||
1652170020,
|
||
"7.5"
|
||
],
|
||
[
|
||
1652170080,
|
||
"6"
|
||
],
|
||
[
|
||
1652170140,
|
||
"6"
|
||
],
|
||
[
|
||
1652170260,
|
||
"5.5"
|
||
],
|
||
[
|
||
1652170320,
|
||
"5.25"
|
||
],
|
||
[
|
||
1652170380,
|
||
"5"
|
||
],
|
||
[
|
||
1652170440,
|
||
"3"
|
||
],
|
||
[
|
||
1652170500,
|
||
"1"
|
||
],
|
||
[
|
||
1652170560,
|
||
"4"
|
||
],
|
||
[
|
||
1652170620,
|
||
"4"
|
||
]
|
||
]
|
||
}
|
||
]
|
||
}
|
||
}
|
||
```
|
||
|
||
In response, VictoriaMetrics returns `17` sample-timestamp pairs for the series `foo_bar` at the given time range
|
||
from `2022-05-10 09:59:00` to `2022-05-10 10:17:00`. But, if we take a look at the original data sample again, we'll
|
||
see that it contains only 13 raw samples. What happens here is that the range query is actually
|
||
an [instant query](#instant-query) executed `1 + (start-end)/step` times on the time range from `start` to `end`. If we plot
|
||
this request in VictoriaMetrics the graph will be shown as the following:
|
||
|
||
<img src="keyConcepts_range_query.webp" width="500">
|
||
|
||
The blue dotted lines in the figure are the moments when the instant query was executed. Since the instant query retains the
|
||
ability to return replacements for missing points, the graph contains two types of data points: `real` and `ephemeral`.
|
||
`ephemeral` data points always repeat the closest raw sample that occurred before (see red arrow on the pic above).
|
||
|
||
This behavior of adding ephemeral data points comes from the specifics of the [pull model](#pull-model):
|
||
|
||
* Metrics are scraped at fixed intervals.
|
||
* Scrape may be skipped if the monitoring system is overloaded.
|
||
* Scrape may fail due to network issues.
|
||
|
||
According to these specifics, the range query assumes that if there is a missing raw sample then it is likely a missed
|
||
scrape, so it fills it with the previous raw sample. The same will work for cases when `step` is lower than the actual
|
||
interval between samples. In fact, if we set `step=1s` for the same request, we'll get about 1 thousand data points in
|
||
response, where most of them are `ephemeral`.
|
||
|
||
Sometimes, the lookbehind window for locating the datapoint isn't big enough and the graph will contain a gap. For range
|
||
queries, lookbehind window isn't equal to the `step` parameter. It is calculated as the median of the intervals between
|
||
the first 20 raw samples in the requested time range. In this way, VictoriaMetrics automatically adjusts the lookbehind
|
||
window to fill gaps and detect stale series at the same time.
|
||
|
||
Range queries are mostly used for plotting time series data over specified time ranges. These queries are extremely
|
||
useful in the following scenarios:
|
||
|
||
* Track the state of a metric on the given time interval;
|
||
* Correlate changes between multiple metrics on the time interval;
|
||
* Observe trends and dynamics of the metric change.
|
||
|
||
If you need to export raw samples from VictoriaMetrics, then take a look at [export APIs](https://docs.victoriametrics.com/#how-to-export-time-series).
|
||
|
||
### Query latency
|
||
|
||
By default, Victoria Metrics does not immediately return the recently written samples. Instead, it retrieves the last results
|
||
written prior to the time specified by the `-search.latencyOffset` command-line flag, which has a default offset of 30 seconds.
|
||
This is true for both `query` and `query_range` and may give the impression that data is written to the VM with a 30-second delay.
|
||
|
||
This flag prevents from non-consistent results due to the fact that only part of the values are scraped in the last scrape interval.
|
||
|
||
Here is an illustration of a potential problem when `-search.latencyOffset` is set to zero:
|
||
|
||
<img src="keyConcepts_without_latencyOffset.webp" width="1000">
|
||
|
||
When this flag is set, the VM will return the last metric value collected before the `-search.latencyOffset`
|
||
duration throughout the `-search.latencyOffset` duration:
|
||
|
||
<img src="keyConcepts_with_latencyOffset.webp" width="1000">
|
||
|
||
It can be overridden on per-query basis via `latency_offset` query arg.
|
||
|
||
VictoriaMetrics buffers recently ingested samples in memory for up to a few seconds and then periodically flushes these samples to disk.
|
||
This bufferring improves data ingestion performance. The buffered samples are invisible in query results, even if `-search.latencyOffset` command-line flag is set to 0,
|
||
or if `latency_offset` query arg is set to 0.
|
||
You can send GET request to `/internal/force_flush` http handler at single-node VictoriaMetrics
|
||
or to `vmstorage` at [cluster version of VictoriaMetrics](https://docs.victoriametrics.com/cluster-victoriametrics/)
|
||
in order to forcibly flush the buffered samples to disk, so they become visible for querying. The `/internal/force_flush` handler
|
||
is provided for debugging and testing purposes only. Do not call it in production, since this may significantly slow down data ingestion
|
||
performance and increase resource usage.
|
||
|
||
### MetricsQL
|
||
|
||
VictoriaMetrics provide a special query language for executing read queries - [MetricsQL](https://docs.victoriametrics.com/metricsql/).
|
||
It is a [PromQL](https://prometheus.io/docs/prometheus/latest/querying/basics)-like query language with a powerful set of
|
||
functions and features for working specifically with time series data. MetricsQL is backward-compatible with PromQL,
|
||
so it shares most of the query concepts. The basic concepts for PromQL and MetricsQL are
|
||
described [here](https://valyala.medium.com/promql-tutorial-for-beginners-9ab455142085).
|
||
|
||
#### Filtering
|
||
|
||
In sections [instant query](#instant-query) and [range query](#range-query) we've already used MetricsQL to get data for
|
||
metric `foo_bar`. It is as simple as just writing a metric name in the query:
|
||
|
||
```metricsql
|
||
foo_bar
|
||
```
|
||
|
||
A single metric name may correspond to multiple time series with distinct label sets. For example:
|
||
|
||
```metricsql
|
||
requests_total{path="/", code="200"}
|
||
requests_total{path="/", code="403"}
|
||
```
|
||
|
||
To select only time series with specific label value specify the matching filter in curly braces:
|
||
|
||
```metricsql
|
||
requests_total{code="200"}
|
||
```
|
||
|
||
The query above returns all time series with the name `requests_total` and label `code="200"`. We use the operator `=` to
|
||
match label value. For negative match use `!=` operator. Filters also support positive regex matching via `=~`
|
||
and negative regex matching via `!~`:
|
||
|
||
```metricsql
|
||
requests_total{code=~"2.*"}
|
||
```
|
||
|
||
Filters can also be combined:
|
||
|
||
```metricsql
|
||
requests_total{code=~"200", path="/home"}
|
||
```
|
||
|
||
The query above returns all time series with `requests_total` name, which simultaneously have labels `code="200"` and `path="/home"`.
|
||
|
||
#### Filtering by name
|
||
|
||
Sometimes it is required to return all the time series for multiple metric names. As was mentioned in
|
||
the [data model section](#data-model), the metric name is just an ordinary label with a special name - `__name__`. So
|
||
filtering by multiple metric names may be performed by applying regexps on metric names:
|
||
|
||
```metricsql
|
||
{__name__=~"requests_(error|success)_total"}
|
||
```
|
||
|
||
The query above returns series for two metrics: `requests_error_total` and `requests_success_total`.
|
||
|
||
#### Filtering by multiple "or" filters
|
||
|
||
[MetricsQL](https://docs.victoriametrics.com/metricsql/) supports selecting time series, which match at least one of multiple "or" filters.
|
||
Such filters must be delimited by `or` inside curly braces. For example, the following query selects time series with
|
||
`{job="app1",env="prod"}` or `{job="app2",env="dev"}` labels:
|
||
|
||
```metricsql
|
||
{job="app1",env="prod" or job="app2",env="dev"}
|
||
```
|
||
|
||
The number of `or` groups can be arbitrary. The number of `,`-delimited label filters per each `or` group can be arbitrary.
|
||
Per-group filters are applied with `and` operation, e.g. they select series simultaneously matching all the filters in the group.
|
||
|
||
This functionality allows passing the selected series to [rollup functions](https://docs.victoriametrics.com/metricsql/#rollup-functions)
|
||
such as [rate()](https://docs.victoriametrics.com/metricsql/#rate)
|
||
without the need to use [subqueries](https://docs.victoriametrics.com/metricsql/#subqueries):
|
||
|
||
```metricsql
|
||
rate({job="app1",env="prod" or job="app2",env="dev"}[5m])
|
||
|
||
```
|
||
|
||
If you need to select series matching multiple filters for the same label, then it is better from performance PoV
|
||
to use regexp filter `{label=~"value1|...|valueN"}` instead of `{label="value1" or ... or label="valueN"}`.
|
||
|
||
|
||
#### Arithmetic operations
|
||
|
||
MetricsQL supports all the basic arithmetic operations:
|
||
|
||
* addition - `+`
|
||
* subtraction - `-`
|
||
* multiplication - `*`
|
||
* division - `/`
|
||
* modulo - `%`
|
||
* power - `^`
|
||
|
||
This allows performing various calculations across multiple metrics.
|
||
For example, the following query calculates the percentage of error requests:
|
||
|
||
```metricsql
|
||
(requests_error_total / (requests_error_total + requests_success_total)) * 100
|
||
```
|
||
|
||
#### Combining multiple series
|
||
|
||
Combining multiple time series with arithmetic operations requires an understanding of matching rules. Otherwise, the
|
||
query may break or may lead to incorrect results. The basics of the matching rules are simple:
|
||
|
||
* MetricsQL engine strips metric names from all the time series on the left and right side of the arithmetic operation
|
||
without touching labels.
|
||
* For each time series on the left side MetricsQL engine searches for the corresponding time series on the right side
|
||
with the same set of labels, applies the operation for each data point and returns the resulting time series with the
|
||
same set of labels. If there are no matches, then the time series is dropped from the result.
|
||
* The matching rules may be augmented with `ignoring`, `on`, `group_left` and `group_right` modifiers.
|
||
See [these docs](https://prometheus.io/docs/prometheus/latest/querying/operators/#vector-matching) for details.
|
||
|
||
#### Comparison operations
|
||
|
||
MetricsQL supports the following comparison operators:
|
||
|
||
* equal - `==`
|
||
* not equal - `!=`
|
||
* greater - `>`
|
||
* greater-or-equal - `>=`
|
||
* less - `<`
|
||
* less-or-equal - `<=`
|
||
|
||
These operators may be applied to arbitrary MetricsQL expressions as with arithmetic operators. The result of the
|
||
comparison operation is time series with only matching data points. For instance, the following query would return
|
||
series only for processes where memory usage exceeds `100MB`:
|
||
|
||
```metricsql
|
||
process_resident_memory_bytes > 100*1024*1024
|
||
```
|
||
|
||
#### Aggregation and grouping functions
|
||
|
||
MetricsQL allows aggregating and grouping of time series. Time series are grouped by the given set of labels and then the
|
||
given aggregation function is applied individually per each group. For instance, the following query returns
|
||
summary memory usage for each `job`:
|
||
|
||
```metricsql
|
||
sum(process_resident_memory_bytes) by (job)
|
||
```
|
||
|
||
See [docs for aggregate functions in MetricsQL](https://docs.victoriametrics.com/metricsql/#aggregate-functions).
|
||
|
||
#### Calculating rates
|
||
|
||
One of the most widely used functions for [counters](#counter)
|
||
is [rate](https://docs.victoriametrics.com/metricsql/#rate). It calculates the average per-second increase rate individually
|
||
per each matching time series. For example, the following query shows the average per-second data receive speed
|
||
per each monitored `node_exporter` instance, which exposes the `node_network_receive_bytes_total` metric:
|
||
|
||
```metricsql
|
||
rate(node_network_receive_bytes_total)
|
||
```
|
||
|
||
By default, VictoriaMetrics calculates the `rate` over [raw samples](#raw-samples) on the lookbehind window specified in the `step` param
|
||
passed either to [instant query](#instant-query) or to [range query](#range-query).
|
||
The interval on which `rate` needs to be calculated can be specified explicitly
|
||
as [duration](https://prometheus.io/docs/prometheus/latest/querying/basics/#time-durations) in square brackets:
|
||
|
||
```metricsql
|
||
rate(node_network_receive_bytes_total[5m])
|
||
```
|
||
|
||
In this case VictoriaMetrics uses the specified lookbehind window - `5m` (5 minutes) - for calculating the average per-second increase rate.
|
||
Bigger lookbehind windows usually lead to smoother graphs.
|
||
|
||
`rate` strips metric name while leaving all the labels for the inner time series. If you need to keep the metric name,
|
||
then add [keep_metric_names](https://docs.victoriametrics.com/metricsql/#keep_metric_names) modifier
|
||
after the `rate(..)`. For example, the following query leaves metric names after calculating the `rate()`:
|
||
|
||
```metricsql
|
||
rate(node_network_receive_bytes_total) keep_metric_names
|
||
```
|
||
|
||
`rate()` must be applied only to [counters](#counter). The result of applying the `rate()` to [gauge](#gauge) is undefined.
|
||
|
||
### Visualizing time series
|
||
|
||
VictoriaMetrics has a built-in graphical User Interface for querying and visualizing metrics -
|
||
[VMUI](https://docs.victoriametrics.com/single-server-victoriametrics/#vmui).
|
||
Open `http://victoriametrics:8428/vmui` page, type the query and see the results:
|
||
|
||
<img src="keyConcepts_vmui.webp">
|
||
|
||
VictoriaMetrics supports [Prometheus HTTP API](https://docs.victoriametrics.com/single-server-victoriametrics/#prometheus-querying-api-usage)
|
||
which makes it possible to [query it with Grafana](https://docs.victoriametrics.com/single-server-victoriametrics/#grafana-setup)
|
||
in the same way as Grafana queries Prometheus.
|
||
|
||
## Modify data
|
||
|
||
VictoriaMetrics stores time series data in [MergeTree](https://en.wikipedia.org/wiki/Log-structured_merge-tree)-like
|
||
data structures. While this approach is very efficient for write-heavy databases, it applies some limitations on data
|
||
updates. In short, modifying already written [time series](#time-series) requires re-writing the whole data block where
|
||
it is stored. Due to this limitation, VictoriaMetrics does not support direct data modification.
|
||
|
||
### Deletion
|
||
|
||
See [How to delete time series](https://docs.victoriametrics.com/single-server-victoriametrics/#how-to-delete-time-series)
|
||
.
|
||
|
||
### Relabeling
|
||
|
||
Relabeling is a powerful mechanism for modifying time series before they have been written to the database. Relabeling
|
||
may be applied for both [push](#push-model) and [pull](#pull-model) models. See more
|
||
details [here](https://docs.victoriametrics.com/single-server-victoriametrics/#relabeling).
|
||
|
||
### Deduplication
|
||
|
||
VictoriaMetrics supports data deduplication. See [these docs](https://docs.victoriametrics.com/single-server-victoriametrics/#deduplication).
|
||
|
||
|
||
### Downsampling
|
||
|
||
VictoriaMetrics supports data downsampling. See [these docs](https://docs.victoriametrics.com/single-server-victoriametrics/#downsampling).
|